Search results for "Planetary mass"
showing 4 items of 4 documents
A dynamical calibration of the mass–luminosity relation at very low stellar masses and young ages
2004
Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resol…
The GAPS Programme with HARPS-N at TNG: . Atmospheric Rossiter-McLaughlin effect and improved parameters of KELT-9b
2019
In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, VsinI$\sim$110 km/s) with the HARPS-N spectrograph at the TNG. In this work we analyse the spectra and the extracted radial velocities (RVs), to constrain the physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar RVs with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra an…
The mass determination challenge for exoplanetary science
2023
The mass of an exoplanet is a key parameter for the characterisation of the internal structure of a planet, as well as the study of the formation and the evolution of the planet, and its atmosphere. The radial velocity technique allows for measuring the planetary mass from the radial velocity variation of its parent star. However, limitations in the property determination of exoplanets, particularly in their masses, can arise from various sources especially from astrophysical noise due to stellar variability, caused by magnetic activity, which affects the detection and characterisation of exoplanets. This PhD thesis aims to understand the impact of our knowledge of the planetary mass in the…
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
2009
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…